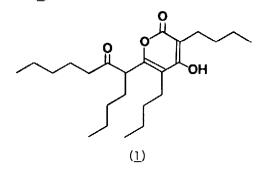
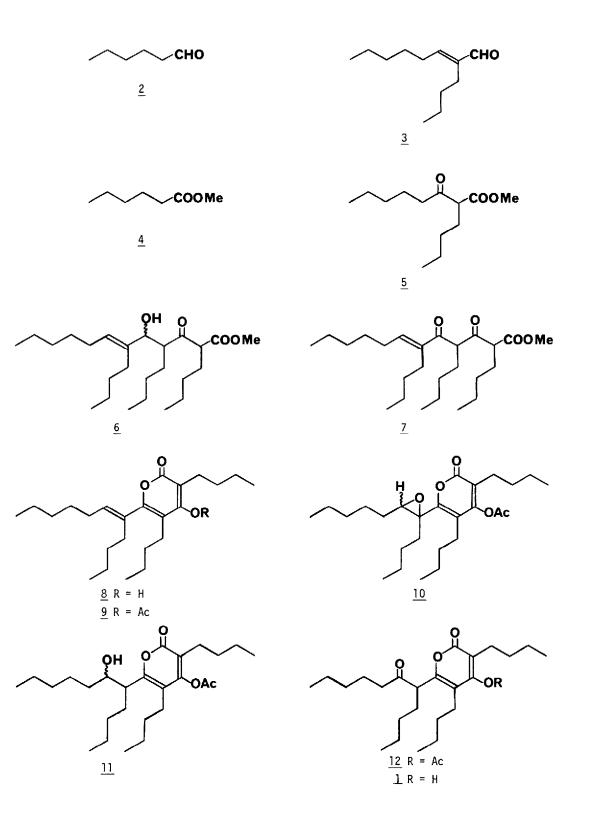
SYNTHESIS OF ELASNIN¹


Jürg R. Pfister

Syntex Research, Palo Alto, California 94304

<u>Summary</u>: An efficient synthesis of the naturally occurring elastase inhibitor elasnin is described.

Elasnin (<u>1</u>) is an elastase inhibitor which has been isolated from culture broths of a strain of <u>Streptomyces noboritoensis</u>.² Its unique structure, formally related to that of the polyketide tetraacetic lactone,³ has recently been elucidated.⁴


We report here an effective synthesis of elasnin based on the aldol reaction⁵ of a suitably substituted β -ketoester dianion⁶ with an α,β -unsaturated aldehyde,^{7,8} which permits rapid, convergent assembly of the 24-carbon skeleton of elasnin from the simple C₆ precursors <u>n</u>-hexanal (2) and methyl n-hexanoate (4).

Accordingly, <u>n</u>-hexanal (<u>2</u>) was subjected to a boric acid catalyzed aldol condensation⁹ (xylene, reflux, Dean-Stark separator, 20 hrs) to afford (E)-2-butyl-2-octenal¹⁰ (<u>3</u>; 77% yield¹¹) as the first C_{12} -unit.

Conversely, ester condensation of methyl <u>n</u>-hexanoate (<u>4</u>) with 0.5 equiv. NaH in THF (24 hrs reflux, 90%) provided, as the second C_{12} -unit, methyl 2-butyl-3-oxooctanoate¹² (<u>5</u>). The latter was deprotonated successively with NaH (1 equiv. in THF, 50°, 1 hr)¹³ and BuLi (1 equiv., 1.6 M in hexane, 0°, 30 min), and the resulting dianion reacted with <u>3</u> (added as a THF solution) at 0° for 30 min. Careful work-up (quenching with aq. NH₄Cl, extraction with pentane, rotary evaporation <40°) gave an oil consisting mostly of the desired ketol <u>6</u>, which was, however, too unstable to be purified efficiently. Oxidation of <u>6</u> with DDQ (1.5 equiv., dioxan, reflux, 9 hrs) afforded the enone <u>7</u> in a 60% yield for the last two steps.^{14,15}

Treatment of $\underline{7}$ with a catalytic amount of \underline{p} -TsOH in toluene (reflux through A4 molecular sieves for 18 hrs) resulted in the formation of enol lactone <u>8</u> (77% yield),¹⁶ which was converted into the corresponding $\underline{0}$ -acetate <u>9</u> by conventional means (Ac₂0-pyridine, RT, 3 hrs,

85%).¹⁷ Forced epoxidation¹⁸ of <u>9</u> with <u>m</u>-chloroperoxybenzoic acid (1.75 equiv.) in the presence of 4,4'-thiobis-(6-<u>t</u>-butyl-3-methylphenol) (ClCH₂CH₂Cl, reflux, 9 hrs) gave epoxide <u>10</u> (88% yield).¹⁹ As expected, hydrogenolytic oxirane ring opening of <u>10</u> (10% Pd-C, EtOH, RT) afforded exclusively the desired secondary alcohol <u>11</u>, which was oxidized with Jones reagent without any further characterization. The resulting ketone <u>12</u> (80% yield from <u>10</u>) exhibited physical data²⁰ in close agreement with those published for the compound obtained by acetylation of natural elasnin.⁴

Finally, brief exposure of <u>12</u> to conc. H_2SO_4 (0°, 5 min) gave a 92% yield of elasnin (<u>1</u>) with spectroscopic properties²¹ in excellent agreement with those derived from an authentic sample of elasnin.^{2,4}

Additionally, acidic degradation of <u>1</u> (3 N HCl, AcOH, reflux, 72 hrs) gave 3,5-dibuty1-2,6dipenty1-4H-pyran-4-one⁴ as the sole product.

It should be noted that the very low optical rotation $\left[\left[\alpha\right]_{D}^{19}$ -0.9°, c = 1.0, EtOH) reported⁴ for elasnin is probably due to racemization caused by exposure of this material to 0.5 N NaOH during the extraction procedure.² Experimentally, we were able to demonstrate that the methine group flanked by carbonyl and pyrone ring is rapidly deuterated (0.5 N NaOD, 4:1 MeOD-D₂O, RT).

<u>Acknowledgment</u>. The author would like to thank Dr. M. Maddox for the 13 C NMR spectra and Dr. I. Massey for the mass spectra.

References and Notes

- Contribution No. 545 from the Institute of Organic Chemistry, Syntex Research, Palo Alto, California.
- 2. H. Ohno, T. Saheki, J. Ayawa, A. Nakagawa, and S. Omura, J. Antibiot., 31, 1116 (1978).
- 3. R. Bentley and P. M. Zwitkowits, J. Am. Chem. Soc., 89, 676 (1967).
- 4. S. Omura, A. Nakagawa, and H. Ohno, J. Am. Chem. Soc., 101, 4386 (1979).
- 5. S. N. Huckin and L. Weiler, Tetrahedron Lett., 4835 (1971).
- 6. L. Weiler, J. Am. Chem. Soc., 92, 6702 (1970).
- 7. T. Reffstrup and P. M. Boll, Acta Chem. Scand., B, 30, 613 (1976).
- 8. T. Reffstrup and P. M. Boll, Tetrahedron Lett., 1903 (1976).
- 9. R. D. Offenhauer and S. F. Nelsen, J. Org. Chem., 33, 775 (1968).
- 10. M. Cossu and E. Ucciani, Bull. Chem. Soc. France, 1887 (1975).
- Indicated yields refer to purified compounds (distillation or chromatography) with GC purities >95%.
- 12. A. N. Kost and F. Gents, Z. Obshch. Khim., 28, 277 (1958); C. A., 53, 9197i (1959).
- 13. Deprotonation of 5 at RT or below was extremely slow.

- 14. Satisfactory IR, UV, ¹H NMR, ¹³C NMR, and mass spectra, as well as elemental analyses, were obtained for all new compounds. Partial spectral data for each compound are provided as footnotes.
- 15. $\underline{7}$: UV (EtOH) 238 nm (log ε 4.0); MS 408 (M⁺); ¹H NMR (δ , CDCl₃) 6.68 (t, J 7 Hz, 1H), 4.42 (m, 2H), 3.68 (s, 3H).
- 16. <u>8</u>: UV (EtOH) 220, 300 nm (log ε 4.15, 3.97); MS 376 (M⁺).
- 17. <u>9</u>: UV (EtOH) 234, 311 nm (log ε 3.1, 3.4); MS 418 (M⁺); ¹H NMR (δ , CDCl₃) 5.68 (t, J 7 Hz, 1H), 2.33 (s, 3H).
- Y. Kishi, M. Aratani, H. Tanino, T. Fukuyama, T. Goto, S. Inoue, S. Sugiura, and H. Kakoi, J. Chem. Soc., Chem. Commun., 64 (1972).
- 19. <u>10</u>: UV (EtOH) 220, 299 nm (log ε 3.5, 3.95); MS 434 (M⁺); ¹H NMR (δ , CDCl₃) 3.02 (m, 1H).
- 20. <u>12</u>: UV (EtOH) 306 nm (log ε 3.92); IR (neat) 1770, 1715, 1700, 1635 cm⁻¹; MS 434 (M⁺); ¹H NMR (δ , CDCl₃) 3.62 (t, J 7 Hz, 1H), 2.35 (s, 3H).
- 21. <u>1</u>: UV (EtOH) 293 nm (log ε 3.89); IR (CCl₄) 3100, 1710, 1675, 1635 cm⁻¹; MS 392 (M⁺); ¹H NMR (δ , CDCl₃) 3.58 (t, J 7 Hz, 1H).

(Received in USA 28 December 1979)